PROGRAMMA DI ELETTRONICA **ANNO SCOLASTICO 2017/2018**

Classe III AE ELETTRONICA ED ELETTROTECNICA

Testo adottato:

G. BOBBIO, S. SAMMARCO **ELETTROTECNICA ELETTRONICA 1A 1B**

> per il secondo biennio Prof. Bertani Enrico **Prof. Procopio Sostene**

UNITA' 1

GENERATORI. LEGGE DI OHM

Introduzione -Corrente elettrica -Tensione elettrica -Legge di ohm -Generatore di tensione -Bipoli -Diagramma tensione-corrente -Resistività -Coefficiente di temperatura

UNITA' 2

RETI ELETTRICHE

Principi di Kirchhoff -Tensione fra due punti di una rete -Legge di Ohm generalizzata -Resistenza equivalente -Collegamento serie e parallelo di resistori -Resistenza equivalente di resistori posti in serie ed in parallelo -Resistenza equivalente di una rete di resistori -Partitore di tensione e di corrente -Guida alla risoluzione di circuiti -Analisi di circuiti con un solo generatore -Risoluzione di circuiti con il metodo della resistenza equivalente -Generatore reale di tensione -Generatore reale di corrente

UNITA' 3

RETI ELETTRICHE COMPLESSE

Metodi di Kirchhoff e di sovrapposizione degli effetti nella risoluzione di reti elettriche -Generatori equivalenti -Teoremi di Thevenin e di Norton -Risoluzione di reti elettriche con i teoremi di Thevenin e di Norton

UNITA' 4

ENERGIA E POTENZA

Energia e potenza -Potenza generata, assorbita, persa e utile -Rendimento -Effetto Joule.

UNITA' 5

CONDENSATORI

RETI CAPACITIVE IN REGIME STATICO

Richiami di elettrostatica -Condensatore -Capacità di un condensatore -Capacità

equivalente -Collegamento serie e parallelo di condensatori -Capacità equivalente di condensatori posti in serie ed in parallelo -Capacità equivalente di una rete di condensatori -Studio di circuiti con condensatori in regime statico -Calcolo delle cariche e della tensione rispettivamente presenti sulle armature ed ai capi di ciascun condensatore in un circuito con condensatori in regime statico

FENOMENI TRANSITORI NEI CIRCUITI CAPACITIVI

Transitorio di carica di un condensatore -costante di tempo -caso del condensatore inizialmente carico -Transitorio di scarica di un condensatore -Risoluzione di semplici problemi sui transitori dovuti all'apertura e alla chiusura di interruttori in circuiti elettrici di tipo ohmico-capacitivo.

UNITA' 6

IL DIODO

Comportamento del diodo considerato sopra e sotto la soglia $V\gamma$ di conduzione - Modelli del diodo: il diodo come interruttore ideale, il diodo come generatore, il diodo come generatore con in serie un resistore -analisi di semplici circuiti con diodo in serie con un generatore di tensione costante a tratti -circuito limitatore di tensione a singola soglia realizzato con diodo

UNITA' 7

IL BJT COME INTERRUTTORE

ATTIVITA' PRATICA

- 1) Realizzazione di circuiti elettrici su breadboard; misura di resistenze: valore nominali, tolleranze, valori misurati con multimetro; uso del multimetro come amperometro e come voltmetro; misure di correnti e tensioni di un circuito elettrico analizzato con l'uso del multimetro.
- 2) Regolazione reostatica della corrente
- 3) Regolazione potenziometrica della tensione
- 4) Verifica del primo principio di Kirchhoff
- 5) Verifica del secondo principio di Kirchhoff
- 6) Analisi di un circuito realizzato su breadboard e simulato con Multisim con i metodi di Kirchhoff, sovrapposizione degli effetti, Thevenin e Norton con la verifica mediante multimetro
- 7) Misura di cariche e tensioni mediante l'uso del multimetro in circuiti capacitivi in regime statico realizzati su breadboard
- 8) Studio del transitorio di carica e di scarica di un condensatore mediante la visualizzazione della tensione ai suoi capi con l'uso dell'oscilloscopio.
- 9) Verifica del comportamento di un diodo in semplici circuiti realizzati su bradboard.
- 10) Verifica del funzionamento di un circuito limitatore a singola soglia simulato con Multisim.

GLI INSEGNANTI

GLI ALLIEVI